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The importance of non-linear free-surface effects on potential flow past two- 
dimensional submerged bodies is investigated by the use of higher-order per- 
turbation theory. A consistent second-order solution for general body shapes is 
derived. A comparison between experimental data and theory is presented for 
the free-surface waves and for the wave resistance of a foil-shaped body, The 
agreement is good in general for the second-order theory, while the linear theory 
is shown to be inadequate for predicting the wave drag at  the relatively small 
submergence treated here. It is also shown, by including the third-order free- 
surface effects, how the solution to the general wave theory breaks d o m  at low 
speeds. 

1. Introduction 
The problem of a body moving in or beneath a free surface under gravity is 

approximated usually by linear potential flow theory assuming small surface 
disturbances. This is due to the intractable nature of the non-linear free-surface 
conditions. For most realistic problems, however, this simplified theory is far 
from adequate. For example, the Michell(l898) linear ship-wave theory predicts 
wave resistance which differs from experimental data by as much as a factor of 
three. The author believes that a main part of the discrepancies between ana- 
lytical and experimental results could be due to the neglect of the non-linear 
effects at  the free surface, and that the viscous effect is probably not as im- 
portant as often stated. This non-linearity is investigated here, and in particular 
its effect on the wave resistance. 

Only two investigators have applied a consistent second-order wave theory 
to  the problem of free-surface effects on the flow past bodies: Bessho (1957) and 
Tuck ( 1965). Both restricted themselves to the simplified two-dimensional 
case of a submerged circular cylinder. Bessho derived correctly the complex 
potential, but neglected the most important higher-order term in deriving 
the force. His final result, and many of his conclusions, are therefore incorrect. 
Tuck, on the other hand, correctly obtained the wave resistance and the 
lift for the circular cylinder; he also correctly stated the very opposite con- 
clusion of Bessho, namely that for a circular cylinder ‘it is more important to 
correct for non-linearity at  the free surface than for the fact that the boundary 
condition is not satisfied exactly by the first approximation on the body surface ’. 
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Tuck's paper appears to  be the only work to  date on flow past a body in which 
the effect of non-linearity at  the free surface has been treated correctly to the 
second order.? 

Salvesen (1966) and Giesing & Smith (1967) investigated second-order effects 
on the wave resistance of two-dimensional foil-shaped bodies. They took 
second-order effects into account, but not in a consistent manner. Salvesen 
satisfied the free-surface condition correct to the second order, while the con- 
dition on the surface of the cylinder was satisfied only to the first-order approxi- 
mation. Giesing & Smith, on the other hand, satisfied the body condition to 
second order but included only linear free-surface terms. 

The main objective of the present work has been to formulate a consistent 
second-order theory for any general two-dimensional body, and to investigate 
the accuracy of this consistent theory. A comparison between experimental data 
and theory is presented for the free-surface elevation and the wave resistance of 
a foil-shaped body. It is shown that the agreement is in general good for the 
consistent second-order theory, but that the linear theory is inadequate for 
predicting the wave drag at the relatively small submergence treated here. 

The results also show that at  lower speeds the main higher-order contribution 
to the wave resistance comes from the free-surface effect, while at  higher speeds 
the most important contribution comes from satisfying the cylinder boundary 
condition correct to second order. This is an interesting result, considering that, 
in the case of a circular cylinder, Tuck (1965) showed that the free-surface con- 
tribution was the most important for the entire speed range. The main reason for 
this difference is due to the circulation which is introduced for the wing-shaped 
body treated here in order to satisfy the Kutta condition. 

It is often overlooked that the linear or higher-order wave theory generally 
used for free-surface flow past bodies becomes singular as the Froude number 
approaches zero, and that the solution breaks down for small Froude numbers. 
This singular behaviour of the solution at  low speeds is investigated here by 
including not only the first- and second-order effects, but also some third-order 
effects. 

2. Formulation of the problem 
An infinitely long cylinder is supposed to move with a constant velocity U in 

a direction perpendicular to its axis and at  a fixed distance below the undisturbed 
free surface. The problem is to determine the surface waves and the wave 
resistance. 

The flow will be treated as steady in a co-ordinate system moving with the 
cylinder. A two-dimensional co-ordinate system will be used with the y-axis 
pointing upwards, and the x-axis located a distance b below the undisturbed 
free surface. The direction of increasing x coincides with the direction of motion 
of the cylinder. It will be assumed that the fluid is inviscid, incompressible and 
without surface tension, and that the flow is irrotational. 

below the free surface. 
t Kim (1968) recently solved the second-order three-dimensional problem of a sphere 
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Formulating this two-dimensional, steady-state problem in terms of the 
stream function $(x, y), we have that $ must be a solution of the Laplace 
equation 

and satisfy the kinematic and the dynamic free-surface conditions 

(2.1) V2$ = $zE + lcryy = 0, 

$ = - b U  (2 .2 )  

and $($t+$t)+gy = $Uz+gb (2.3) 
on the unknown free surface, y = b + ~ ( x ) .  Here g is the gravitational acceleration. 
On the cylinder surface we have 

$ = constant, (2.4) 

and the Kutta condition specifying that the trailing edge is a stagnation point. 
Assuming infinite depth, we have that 

lim (grad$) = - Uj, 
g-+- m 

where j is the unit vector in the y-direction. In  addition to these conditions, we 
must also specify the absence of waves far upstream. 

The boundary conditions at  the free surface are clearly non-linear. Assuming, 
therefore, that the submergence of the body is large, and that the free-surface 
disturbances are all small, the problem can be reformulated in terms of a per- 
turbation scheme. In particular, we assume that the stream function $ can be 
expanded in an asymptotic series in terms of the small parameter 

E: = t /b,  (2 .6)  

where t is the vertical dimension of the body and b is the submergence. Both the 
vertical and the horizontal dimension of the body are assumed to be of the same 
order. The near-field expansion valid close to the body can then be written as 

$(GY) = 1- UY + $2301 + WFl+ $lsll+ ... + WF,+ $23nl+ -* . ,  (2.7) 

where the terms in the first, second, . . . , nth brackets are assumed to be of O( l), 
O(B) ,  ..., O ( @ )  respectively, and where $230, ?,kBl, ..., $Bn are chosen so that the 
terms in the brackets satisfy the body conditions exactly, and $F1, $Fz, . . ., $pn 

are the first-, second-, . . ., nth-order free-surface contributions. 
On the other hand, the expansion valid in the far field, and near the free 

surface in particular, will be assumed to  be of the form 

$(x,y) = - Uy+$(l)+Ijf"t+ ...+~,)+*.*, 
$(I) = $230 + $Fl = O@>, 

(2.8) 
with 

$@) = yFBl+ $F2 = O(@),  etc. 

This means that we are in fact perturbing about the uniform flow, $ = - Uy, 
in the far field, while in the near field we are perturbing about the flow past the 
body in an unbounded fluid, 4 = [ - Uy + $BO]. In  the same way we assume that 
the free-surface elevation ~ ( x )  has the expansion 

27 

r(x) = 7/(1)+?p+ ... +p(n'+ ..., (2.9) 
Fluid Meoh. 38 
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and that the uniform-stream velocity U is still an unknown of the problem, with 
the expansion u = u(0) + u(1) + u(2) + . . , + uc") + . . . , 
where @) and u(n) are both of O(en). The uniform-stream velocity has been chosen 
here as an unknown, in the manner of Wehausen & Laitone (1960, p. 655). This 
simplifies the derivation; but it is probably physically more attractive to let the 
wavelength or the wave-number be unknown, and expand these quantities. 

Substituting the expansion (2.7) or (2.8) in the Laplace equation (2.1), it 
follows that each of the contributions to the stream function, $Bn and $Fn, must 
be a harmonic function. A substitution of the near-field expansion (2.7) in the 
body condition (2.4) gives that $Bo must satisfy the condition 

(2.10) 

[ - U'O'Y + $BO] = 0 (2.11) 

on the cylinder surface plus the Kutta condition. Then substitution of the far- 
field expansion (2.8) and the free-surface and uniform velocity expansions (2.9) 
and (2.10) in the free-surface conditions (2.2) and (2.3) gives the linearized free- 
surface condition [&.I [@BO+lcrFll= 0 on Y = b. (2.12) 

$Fl must satisfy in addition to this condition the infinity condition, Here 
v = g/u(O'Z is the wave-number. Further substitution shows that the next-order 
body singularities, given by $Bl, are obtained by satisfying 

[$Fl + @Bll = U'l'Y, (2.13) 

at the cylinder wall, together with the Kutta condition, and that the second-order 
free-surface term ?,hF2 must satisfy the radiation conditions and the inhomogeneous 
free-surface condition 

(2.14) 

where the right-hand side is a function of the first-order solution, 

f ' 2 ' ( X )  = ~ ($y + $y) + $1) [.$f' - $m] - 2vu(1)11(1). 
1 

2U'O) 
(2.15) 

Similarly one can systematically obtain the conditions for any higher-order 
terms and in general the nth-order free-surface condition can be written as 

[ - v] [$Bn-1+ 

where of special interest is the third-order function 

= F Y X )  on 9 = b, (2.16) 

f'3'(4 = y [ p )  $p + 1 (1)2 $(I) + y+l) $'"'I - 7(2) p - * p  9'" 
211 YY Y uu YYY 

1 
uu u 

-pp + - (0) [ 9 (1) $Y (1) $,, (1) + 11 (1) $L? $2 + $k" $p + $P $?I 

- 2u(2) ql(l) + u(1) [p p) YY - $g' - ,11'2']. (2.17) 
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It also follows from these substitutions that the first-, second- and third-order 
free-surface elevations are given by 

1 
u(0) T p )  = - $("(z, b) ,  (2.18) 

(2.19) 

It should be pointed out that in deriving the first- and higher-order free-surface 
conditions it was assumed that the non-dimensional wave-number, b v = gb/u(0)2, 
is of order 1 (i.e. the Froude number, Fr = u(O)/J(gb), is also of order 1). Strictly 
speaking, therefore, this scheme is applicable only when the wavelength, 
h = 21r/v, is of the same order as the submergence of the body. 

3. Consistent second-order theory 
(i) Derivation of the stream function 

The singularity representation of any general body without circulation in an 
infinite flow may be written as a line integral over the cylinder contour 

$BO(z, Y) = & Im jL  m(6) In ( z  - 6) d6, (3.1) 

where the real source strength m(6) is determined by the cylinder condition (2.11). 
Here the complex variable x = x+iy has been introduced, and Im stands for 
the imaginary part. 

For numerical computations it is most convenient to approximate the line L 
by a large number of straight-line segments with constant source strength mi 
over the j t h  segment, 

1 N  
$ B0-27T - -1m .j=1 I; mjln(z-zj). (3.2) 

Then, satisfying condition (2.11) at the midpoint ( x i )  of each segment results in N 
equations with N unknown source strengths, which can be solved using standard 
matrix techniques. If the Kutta condition applies, a concentrated vortex of 
strength r at some point z, inside the body is introduced to produce the desired 
circulation. This circulation causes a flow normal to the cylinder wall, which 
must be cancelled by the appropriate adjustment to the source strengths, mi. If 
we let m, = ir, we may for the circulation case write the stream function as 

1 N  $ - -Im C miln(z-zj). 
B o -  277 j = o  (3.3) 

From Wehausen & Laitone (1960, p. 489), the first-order free-surface term 
$pl, satisfying the linearized surface condition (2.12) and the conditions at  
infinity, is then 

27-2 
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where z? = Z j  + i2b (with X the conjugate of z). Define the complex function 

where the notation of the exponential integral El is that of Abramowitz & Stegun 
(1964); then (3.4) can be written as 

1 N  
F1 - - Im mi [ln ( x  - 2;) + 2l{ iv (z  - 27)}]. (3.6) @ - 2 n  j = o  

Introducing known expansions for El, it can easily be shown that the complex 
function (3.5) has the series expansion 

and the asymptotic expansion 

1 1 2 !  3!  
- + - + - + - + . . . 
L- c2 6 c4 

(3.7) 

with plus sign for Im < -+ - co and minus sign for Im 5 + + m. 
The next-order singularity @B1 can be represented in the same way as @.BO, 

namely 

where it follows from the wall condition (2.13) that the M unknown source 
strengths crk are determined by satisfying 

M N 

k = l  i = O  
Im ckln(z-z,)+Im 2 m,[In(~-z~)+2l{iv(z-z;*)}] = 2nu(l)y (3.10) 

a t  the M number of midpoints z k .  Note that (3.10) requires that the expansion 
(3.7) be evaluated N x M times, which can be quite time-consuming. The Kutta 
condition is satisfied as in the previous case by a vortex of strength cro with the 
necessary adjustments to the source strengths, gk. 

The next step is to obtain the second-order free-surface term, q9F2, which 
must satisfy the inhomogeneous surface condition (2.14). If we let 

@F2 = '@F2 + 2+F2, (3.11) 

we may rewrite the free-surface condition (2.14) as 

[gev] [$B1+1$F21 = at y = b, (3.12) 

(3.13) and 

B now follows from (3.12) that 

[$-- v] [2@F2] = f2) (z )  at y = b. 

(3.14) 
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Then, by recognizing that condition (3.13) is the same as the free-surface con- 
dition for the linear problem of a fixed pressure distributionf(2)(x) on the free 
surface of a uniform stream, we can apply the solution to the pressure problem 
given by Wehausen & Laitone (1960, p. 601). Whence we get 

2$F2 = -)! ds f@)(s) Re I{iv(x - s - ib)}. (3.15) 

The solution (3.15) is bounded only if the functionf(2)(x), given by (2.15), is 
non-oscillatory for large negative values of x. Applying the asymptotic expansion 
(3.8) ,to (2.15), we have 

lim f(Z)'(x) = const. - 2vu(l)q(l)(x), 

1 "  

- m  

x-+-m 

where q(l)(x) is a regular outgoing sinusoidal wave. Hence, we must set 

q,Cl) = 0. (3.16) 

1 d 
dz 2 

(3.17) Using the equation - I{ivz} = - - - ivI{ivz} 

the function f@)(x) can now be written in terms of the first-order solution (3.3) 
and (3.6) as 

where 6 = (z - z j )  - i (b  - yj). This completes the second-order solution valid at  
the free surface, and in the far field 

$(%, y) = - uy + [$BO + $F11 + [$Bl f '$I72 f 2$1721+ 0(e3)7 (3.19) 

where the individual terms are given by equations (3.3), (3.6), (3.9), (3.10), (3.11), 
and (3.15). 

The solution (3.19) is not correct to the second order in e in the near field, as 
seen from equation (2.7). If the near-field solution is required to this order, the 
additional term $B2 must be determined. In  this work, however, we are interested 
in only the wave elevation and the wave resistance, both of which can be obtained 
from the far-field solution (3.19). 

(ii) Wave elevation 

The wave elevation, correct to the second order in e, q = ~ ( l ) + q ( ~ ) +  ..., where 
q(l) and T ( ~ )  are given by (2.18) and (2.19), can now be written in terms of the 
first- and second-order solution as 

(3.20) 
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Here = (z- xi) - i(b - yi) and the functions I and f(s) are given by (3.5) and 
(3.18) respectively. Far downstream we have by the asymptotic expansion (3.8) 

7'1) - a(1) cos (vx - p), (3.22) 
that 

where the first-order wave amplitude and phase shift are given by 

a@) = \&(1)1 and ~3 = arg&(I), (3.23) 

with the complex number &(l) given by 

(3.24) 

Far downstream the second-order part becomes 

p) - a(2) cos (vx - 6) + gva(l)2 COB 2( vx - p), (3.25) 

with a@) = I &(2)1 and 6 = arg &@), (3.26) 

where (3.27) 

In  obtaining (3.25) the fact that the functionf(2)(x) tends to the constant value 
(gv/2d0)) a(1)2 for large negative values of x was used. This constant is exactly the 
right magnitude to cancel the constant part of the term v ~ ( l ) ~  in (3.21). 

(iii) Wave resistunce 
The 'exact '7 formula for the wave resistance as derived by energy considerations 
in John (1949) or by the momentum theorem in Salvesen (1966) is 

(3.28) 

where $(x, y) is the 'exact' stream function, q(x) is the 'exact' wave elevation, 
xo denotes any vertical plane behind the body, and p is the mass density of the 
fluid. 

Observing that the wave elevation far downstream correct to 0(e2) is given 
by (3.22) and (3.25) as 

7 = a(1) cos (vz - p) + &va(1)2 cos 2( vx - p )  + a@) cos (vx - 6) (3.29) 

and that the stream function far downstream, correct to the same order, is 

I# = u ( 0 )  e@-u) [a(l) cos ( vz - p )  + a@) cos (vx - a)], (3.30) 

and evaluating the expression (3.28) at some far downstream section, it can be 
shown that the wave resistance, correct to the third order in E ,  is 

R = ipg[a(l)2+ ~ L X ( ' ) ~ ~ ) C O S  (6 -p ) ] ,  (3.31) 

where the first- and second-order wave amplitudes, a(1) and a(2): and the phase 
shifts, 6 and p, are given by (3.23) and (3.26). 

'Exact' in quotation marks refers to exact within potential-flow theory. 
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Expressing the resistance in terms of the trough-to-crest wave height, which 
by (3.29) is correct to O(E~), 

(3.32) 

we have R = i p g ( p ) 2 +  o(64). (3.33) 

Hence, using this result with experimental work, where H is the actual measured 
downstream trough-to-crest wave height, equation (3.33) gives the wave re- 
sistance correct to O(e3) even when the waves are not exactly sinusoidal. 

(iv) Numerical and experimental results 

In  order to investigate the importance of the second-order terms and the im- 
proved accuracy obtained by including them, the wave elevation and wave 
resistance for a given body were both numerically computed on an IBM 7090 
computer and experimentally obtained. 

It was recognized that a considerable saving in computation time could be 
achieved by selecting a body whose singularity representation in an unbounded 
uniform flow is of a simple known form. A symmetrical body represented in a 
uniform flow by eleven concentrated sources equally spaced along the line of 
symmetry was chosen: 

(3.34) 

with the known source strengths 

(3.35) 
mj = - 0*087~U(5 + 8j/7)/24 when 0 < j < 7, 

= +0*087rU when 8 <j < 10. 

The body-surface co-ordinates are then given by 

(3.36) 

and the cross-section of the body is seen in figure 1. The first-order solution is then 

with $F1 given by (3.6) in terms of the known singularities mi. 

a concentrated vortex were used to represent the body correct to order c2: 
An additional distribution of 138 source segments on the cylinder wall and 

(3.38) 

where the strengths were obtained by satisfying numerically the condition (3.10) 
and the Kutta condition. One should note that the strengths cr, are speed- 
dependent and must be recomputed for each speed of interest, while the mi in 
(3.34) are independent of the speed except for the factor U in (3.35). 
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With the known first-order and the computed second-order singularity repre- 
sentations, the wave elevation correct to second order is obtained by (3.20) and 
(3.21) and the wave resistance by (3.31). It is especially true when computing the 
integral term in the second-order wave (3.21) that essential time saving is 
obtained by the simple form of the first-order singularity representation (3.34). 

b - 1 . 0 9 1  

FIGURE 1. Cross-section of body. 

The experiments were conducted in the main tank (360 x 20 x 9ft.) at the 
Ship Hydrodynamics Laboratory of The University of Michigan. In order to 
represent the two-dimensional flow adequately, an 11 ft. strut with end-plates 
and cross-section as shown in figure 1 was used (chord length = 1.09ft. and 
thickness = 0-374ft.). The wave elevation was measured by a 0.0016 in. capaci- 
tance wire and the horizontal drag force was measured on the middle 2 ft. section 
of the model by water-proofed strain-gauges mounted on two cantilever beams. 
A more detailed description of the experiments can be found in Salvesen (1966), 
where many experimental results are also presented, 

Since the non-linear free-surface effects are most important at the smaller 
submergences, comparisons will be made here between the experiments and the 
consistent second-order theory only at the smallest submergence for which there 
was no wave-breaking ( b  = 1.25ft.). Wave profiles are shown in figure 2 for three 
speeds, Froude number equal to 0.40, 0-71 and 0-87.t These cases were selected 
as representative samples showing the essential features for each of the following 
speed ranges: very low speeds, intermediate speeds and higher speeds. At the 
very low speeds (3% = 0.40) it  is seen that the second-order wave height is several 
times the height predicted by the linear theory, which seems to violate the 
assumption of a converging perturbation series. However, the agreement between 
experiment and the second-order theory is surprisingly good at this low speed 
despite this violation. In  the intermediate speed range (Fr = 0.71) the second- 
order contribution is relatively small and the agreement in wave height is very 
good, while the measured wavelength is seen to be about 10 yo smaller than that 
predicted by the theory. Similar discrepancies in wavelength were found for every 
speed tested in this intermediate speed range. At the higher speed (Fr = 0.87), 
which is in the speed range of maximum wave height, and hence maximum wave 
resistance, quite good agreement between second-order theory and experiment 

t The Froude number is here defined with respect to body submergence b, so that 
Fr = UfJ(gb) .  
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is seen with respect to both wave height and wavelength. However, it is dis- 
couraging to note that a t  this speed the linear theory over-predicts the wave 
height by as much as 20 yo. 

U’L 

-.c 

- 0.2 

- 1.3 

1 

FIGURE 2. Wave-election curves for E = t /b  - 0.30. ---, first-order theory; ---, 
second-order theory; - , measured wave. 4 indicates location of trailing edge. 

Figure 3 shows the wave-resistance curves from first- and second-order theory 
and from experiments. There are two experimental curves. One, the solid line, 
is obtained from wave-height measurements, using the derived equation (3.33), 
R = $pg( iH)2 .  The other, the dotted line, is obtained from drag measurements 
by subtracting the horizontal drag at  4-5ft. submergence from the total 
drag at the 1-25 ft. submergence (assuming only viscous drag at the 4-5ft. sub- 
mergence and no interaction between wave and viscous resistance). The wave 
resistance from the drag measurements is rather high at the lower speeds, which 
seems to indicate that the viscous drag is not the same at  4.5 and 1-25ft. sub- 
mergence, but that it increases as the body gets closer to the free surface. This 
is most likely due to an increase in the velocity of the fluid next to  the body as 
a result of the free surface. Furthermore, this shows how extremely difficult it is 
to determine the actual wave resistance from drag-force measurement. The 
author strongly believes, therefore, that, when checking the validity of theoretical 
work, one should not use drag force data, but rather the data from wave survey. 
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Comparing the wave resistance from wave survey with the theory in figure 3, 
it  is seen that the linear theory agrees rather poorly with the experiment. It 
grossly underestimates the wave resistance at the lower speeds and overestimates 
it by as much as a factor of two at the higher speeds. On the other hand, the 
consistent second-order theory shows fair agreement with experiment over the 
entire speed range. 

0.3 0.5 0.7 0.9 1.1 
Froude number, U/J(gb)  

FIGURE 3. Wave-resistance curves for e = t / b  = 0.30. -.-, firsborder theory; - - -, 
second-order theory; - , from measured wave; - - - -, difference between horizontal 
drag a t  1.25 and 4.5 ft. submergence. 

This substantial difference between the linear and the second-order theory 
should be considered in terms of the two different second-order contributions: 
(a )  the second-order linear body correction effect, and (b )  the second-order non- 
linear free-surface effect. Figure 4 has been prepared in order to separate these 
two effects. The figure shows the wave resistance obtained by ( a )  linear theory, 
( b )  inconsistent second-order theory (neglecting the body correction effects), and 
(c) consistent second-order theory. Comparison of these curves shows that both 
second-order terms are important and that neither should be neglected. It is 
especially interesting to note that at lower speeds (Fr < 0.65) the main higher- 
order contribution to the wave resistance comes from the free-surface effect; 
however, at  higher speeds (Fr > 0.75) it is seen that the body-correction term 
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gives the essential contribution. This is an interesting result, considering that in 
the case of the circular cylinder Tuck (1965) showed that the free-surface con- 
tribution was the most important for the entire speed range. The reason that the 
body-correction effect is so important for the wing-shaped body treated here 
is that, in addition to the singularities introduced in closing the body, a circulation 
term is introduced such that the Kutta condition is satisfied. The numerical 
results show that it is mainly this circulation term which gives rise to the large 
second-order effect at  higher speeds (Fr > 0.75). 

FIGURE 4. Theoretical wave-resistance curves for e = t/b = 0.30. -*-, first-order theory; 
, inconsistent second-order (neglecting body-correlation effects) ; - - - , consistent 

second-order. 

It should be emphasized that the free-surface disturbances are quite severe 
in the case presented here and that the ratio between the chord length and the 
submergence is not small but almost equal to one. This severe case was selected 
so that a better comparison could be made of the relative importance of the 
different second-order contributions. As the submergence increases, however, 
the second-order effects will become less dominating and also the agreement with 
the experiment will improve greatly. 

In  general, it  can be stated that the consistent second-order theory agrees 
quite well with the experiments; but there are two aspects of the results which 
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are less satisfactory. First, at  the very low speeds, the second-order contribution 
is several times the linear one, and secondly, in the intermediate speed range, 
both the linear and the second-order theory seem to over-predict the wavelength. 
The next section is devoted mainly to the study of these two interesting points. 

4. Third-order effects 
In  deriving the first-, second- and higher-order free-surface conditions, 

i t  was necessary to assume that the wave-number v is O(1) so that vp) = 0 ( e i ) .  
Clearly this expansion scheme becomes invalid as U + 0 and v + co. In  fact, the 
expansion is singular for U = 0. 

Unfortunately, very little is known about how the theory breaks down as 
U -+ 0, and for a given case it is impossible to  tell a priori in what range of values 
of the non-dimensional wave-number, vb = gb/U2, the results become invalid. 

This behaviour will be studied here by computing the wave profile correct to the 
third order in 8 and by investigating the convergence of the first three terms for 
low speeds. A given singularity distribution will be used as the submerged dis- 
turbance rather than a solid body, since this greatly simplifies the computations 
by eliminating the body-boundary condition. This approach should result in no 
loss of generality as far as the study of the convergence and the validity of the 
series expansion at  low speeds are concerned. 

Assume (as in § 2) that the stream function and the uniform-stream velocity 
have the following expansions valid near the free surface and in the far field: 

@(s,y) = - U 2 / + @ ( 1 ’ + ~ ‘ 2 ’ + ~ 3 ’ +  ..., 
u = d o )  + u(1) + u(2) + . . . . 

(4.2) 

(4.3) 

Let the disturbance be represented by some singularities, 

Then we find, by (3.3) and (3.6), that the first-order stream function is 

P) = $B + $m 

where 
1 N  

- - Im C mj{ln ( x  - zf) + 2 l [ i v ( z  - zf)]}. llr - 2 n  j = o  

Since the higher-order terms $-(2) and $A3) do not, in this case, have to satisfy any 
body condition, but only the non-linear free-surface condition (4.1), we have 
that the second- and third-order stream functions are simply given by 

P’=,co, --m dsf@)(s) ReI{iv(z - s - ib)} (i = 2,3), Sw (4.7) 

where f@)(x) and f ( 3 ) ( z )  are expressed in (2.15) and (2.17) respectively, in terms 
of the lower-order solutions. 
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Having obtained the stream function correct to the third order for the given 
singularity distribution (4.4), the first-, second- and third-order terms in the 
wave-profile expansion, 

(4.8) 

are easily obtained by substitution of the stream function into (2.18), (2.19) 
and (2.20). 

To ensure that the solutions (4.7) are bounded, however, the functions f@)(z) 
must be non-oscillatory for large negative values of z. For the second-order case 
this requires that u(l) = 0, as stated in (3.16). For the third-order case it can be 
shown that 

r] = ?+I) + ?p + $3) + . . . , 

(4.9) 
lim f ( 3 ) ( z )  = - 9 y a ( l ) a ( 2 ) +  K y 2 0 ~ ( 1 ) 2 7 ( 1 ) ( 2 )  - ~ V U ( Z ) ~ ] ( ~ ) ( Z ) ,  

x-b- co u(0) u(0) 

where q(l)(z) is a regular outgoing sinusoidal wave. Hence, we must set 

u ( 2 )  = l y 2 a ( l ) Z u ( O ) ,  2 (4.10) 

(4.11) 9 
u ( 0 )  

lim f 3 ) ( 2 )  = - v a ( l ) c ~ ( ~ )  = const. so that 

It follows from (4.10) that the uniform-stream velocity (4.3) is 

2+--m 

u = u(0)(l+r 2 v a  2 (1)2 ), (4.12) 

which we recognize as the result originally obtained by Stokes (1847) for the 
third-order Stokes wave. This implies that the wavelength according to the third- 
order theory is 

A = - = - UZ( 1 - v 2 a ( 1 ) 2 )  , (4.13) 

while the wavelength given by both the linear and the second-order theory is 

Let us now turn to some of the numerical results. The same eleven concentrated 
sources (3.35) which represent the tested body (figure 1) in an unbounded uni- 
form flow were used as the submerged disturbance. The first-, second- and third- 
order contributions to the far downstream wave heights (H@), H(2) and H(3)) were 
computed in the low-speed range, and the results are presented in figure 5 as 

2n 2n 

V Y  

h = (2n/g) u 2 .  

the ratios 
(4.14) 

plotted against the non-dimensional number m b  = gt/u(o)2.t One notes in this 
figure the reversal of the relative magnitude of the first-, second-, and third-order 
terms as the speed decreases. This is typical behaviour for perturbation solutions 
approaching a singular point, in this case U = 0. The very same behaviour can 
be seen, for example, in Van Dyke (1964) for the singular perturbation problem 
of a ‘slightly supersonic flow past a slender circular cone’. 

t Note that gt/u(o)a is actually a wave-number rendered non-dimensional by the body 
thickness, making these results independent of the body submergence, and that t is here 
redefined as the vertical dimension of the body created by the given singularity distribution 
in an unbounded uniform flow. 
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The low-speed case, Fr = 0.40 and E = t /b = 0-30, for which the first- and 
consistent second-order profiles were presented in figure 2, is also marked in 
figure 5. For this case it is seen that, while the second-order wave height is much 
larger than the first-order, the third-order contribution is relatively 'small '. 
This strongly suggests the possibility that the terms in the expansion start to 
diminish after the second-order term and that the series is most likely convergent 
even at  this speed. The good agreement between experiment and consistent 
second-order theory, as shown in figure 2, also seems to support this possibility. 

It seems reasonable to assume that the trend of these results is applicable 
generally to any submerged two-dimensional body, and that one may conclude 
from figure 5 that the linear theory should not be applied at the very small 
speeds g t / U 2  < 1.0. On the other hand, in the low-speed range (1.0 < g t / P  < 2.0) 
the second-order theory may be used even if the linear theory by itself is not 
applicable. 

The first-, second- and third-order wave profiles created by the selected 
submerged singularities (3.35) were computed for several combinations of speeds 
and submergences. Figures 6 and 7 show the cases Fr = 0-40 and Fr = 0.71, 
both with E = 0.30, which are the same Froude numbers for which the consistent 
second-order results were presented in figure 2. For the low-speed case (figure 6) 
it  is seen clearly that the third-order contribution is relatively small. For the 
intermediate speed case (figure 7) one notes the substantial third-order effect 
on the wavelength as previously stated in (4.13). 

In  figures 6 and 7 the experimental results for these Froude numbers have also 
been included, even though the physical problem is not correctly represented to 
the third order in E .  In  fact, by selecting the singularities (3.35) which represent 
the body in an unbounded uniform stream, the body condition is satisfied only 
to the first order. However, the consistent second-order results presented in 
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figure 4 show that for the low speeds (Fr < 0-70), and especially for the very low 
speeds (Pr < 0.50), the contribution from the second-order body correction is 
extremely small relative to the second-order free-surface contribution. Thus, 
assuming that the third-order body-correction term is also negligible, a com- 
parison between these theoretical results and the experiment seems justified. 

ft. 
0.01 

-0.01 

-0.02 

FIGURE 6. Higher-order wave profiles at  low speed. -.-, first-order; - -, second- 
order; - - - -, third-order; --, experiment. Pr = 0.40, E = tlb = 0-30. 

ft. - - 0.20 

- - 0.10 

ft . 

- - -0.10 

Body location - t. ‘ 4  - -0.20 

FIGURE 7. Third-order effect on wave length. ---, first-order; - --, second-order; 
- - - -, third-order; - , experiment. Fr = 0.71, E = t / b  = 0.30. 

To apply any of these results to the three-dimensional problem of a surface 
ship would most likely result in incorrect statements. Because of the many simi- 
larities between the two- and three-dimensional case, however, it is tempting 
to make some speculations. In  the linear ship-wave theory by Michell(l898) the 
same perturbation scheme is used with the expansion parameter 8 = B / L  
(beam/length), and here the non-dimensional wave-number Lv = Lg/ U2 is, by 
assumption, also of order 1. The solution is singular for U = 0;  furthermore, the 
wave resistance obtained by the Mitchell theory agrees well with experiments 
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at Froude numbers larger than about 0.32, while at lower speeds the linear theory 
is off by as much as a factor of three. (See, for example, Havelock (1951) and Inui 
(1957).) One notes that this limiting Froude number corresponds to a value of 
about 1 for the non-dimensional number cLv = Bg/Uz in the ship case where 
8 N 0.10. This is about the same limiting value found for the two-dimensional 
problem. This seems to indicate that the inaccuracy of the linear Michell theory 
at  Fr < 0.32 may not be due to viscous effects, as so often stated, but rather to 
the singular behaviour of the perturbation solution at these low speeds. Taking 
a step further, one may speculate that, as in the two-dimensional case, there is 
a speed range (approximately 1.0 < eLv < 2.0) in the case of the ship, and that 
the second-order theory could give reasonable results in the ship case, even if the 
linear theory is not applicable. Interestingly enough, the speed range corresponds 
approximately to 0.22 < Fr < 0.32, for the ship caae of E = 0-10 (the practical 
speed range for modern commercial ships). 
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